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On the Dynamic Behavior of

Plastic-Rilid Beams under Transverse Load 1

by,

Carl-Fredrik A. Leth
2

Abstract,

This.paper extends previous work on the dynamic response

of simply supported and clamped Veams to transverse impact load-

ing. Symonds,[l]3, has given the solutions for these problems

when the load-time relation is of a type described as "blast

loading", In this paper solutions are obtained for the deforma-

tions caused by a general shape of the load-time curve. Numerical

examples are computed for a symmetrically triangular load-time

relation and compared with a rectangular load-time relation.

Introduction.

A recent paper written by Symonds, (1], treats the

dynamical problems of simply supported and built-in beams, loaded

with a concentrated force at the midpoint or a uniformly dis-

tributed load of magnitude such that large plastic deformations

occur. It is there shown that two types of plastic deformations

appear at high enough loads, There is either a moving hinge

between two rotating rigid parts or one rotating rigid part and

1 The results presented in this paper were obtained in the
course of research sponsored by the Office of Naval Research
under Contract N7onr-35801 with Brown University.

2. Reseorch Assistant Graduate Division of Applied Mathematics,
Brown University, frovidence 12, R. Is

3. Numbers in square brackets refer to the bibliography at the
end of the paper,

a. V
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one finite plastic region, where the fully plastic moment is

developed at all sections. The solutions of the second type of

problems are restricted in [] to load-time functions P(t)
t

which are maximum at t = 0 and satisfy the inequalityPt< Pdt.

The aim of the present analysis is to give solutions for

arbitrary load-time relation for those problems where fully

plastic regions appear. Those are the built-in beams with eitber

a concentrated load at the midpoint or uniformly distributed

load, and the simply supported beam with uniformly distributed

load. Simply supported beams with a concentrated load at the

midpoint are treated in full generality by Symonds, [1).

The same assumptions as in [1] and in two other papers

[2) and [3] are used, These involve a plastic-rigid treatment;

elastic deformations are assumed to be negligible. In [2] and

[3] appear discussions about the conditions under which this

analysis may give a reasonable answer.

A. The Built-in Beam with Concentrated Load

Those properties of the beam which enter into the problem

are defined in Fig. 1. y is the angle from the horizontal to

the rigid part of the beam, w and wo are the angular velocities,

and b is the deflection of the midpoint of the beam* Mo is tkhe

fully plastic moment and m is the mass per unit length. The

force P(t) has the general form, shown in Fig. 2, The same

dimensionless quantities as in the previous papers are used.

They are

oV
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0

a ltik 0  Me3b
T 0 MOT MoT2

T is an arbitrary reference time, e.g., the time during which a

rectangular impulse acts.

At the start of the loading there is such a small force

that the beam does not move. This is the first phase, which ends

when the motionp described in Fig. 3 starts. With w = 0 we obtain

IPt = 2MO

2 0

Hence the first phase ends when = =IL .

The second phase takes place for loads exceeding pIt see

Fig. 3. The moment equilibrium equation about the built-in

section yields

I P =2M + .mt 3w
2 0 3

or 3
= - 6.(z

Dot denotes d/dt and prime d/dq. Successive integrations give

0 and (Do This phase ends when a region of fully plastia moment

develops from the built-in end. This appears when R = 0(Fig. 3)o

R P -m W= 0
2 2

or

Substituting this into the above expression for Of determines

= 12. Hence the second phase applies for p < L .< 12.
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For p > pjI a configuration as in Fig. 1 appears& We

must here distinguish between two cases, namely , 0 and

i z 0. If ; < 0, which we here call the third phase, the fully

plastic region is increasing in length. The angular velocity

of the element i.n the fully plastic region is described by woo

As there is no shear force acting within this region, and there

are no exterior forces, the velocity and angular velocity must

remain constant as long as the element remains within the plastic

region. Hence wo is a function of x only. The element has the

same angular velocity as the inner part of the beam had when

the interface just passed it. In the Appendix of [2] the

acceleration condition across a moving hinge is derived. In

this case there is no difference between the angular velocity on

each side of the moving interface and so the accelerations are

continuous, Therefore the accelerations of the middle part of

the beam are given by (4t- x) 4 Fig. 4. The moment equation

about the midpoint of the beam and the equilibrium equation give

2Mo0 = 6I mo3

2 P 2 Mee W.

or

' 3 ' =12

From these we have

U , aI = .(2)

0
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Two integrations give 0 and (D.
S

Phase IV considers the case 0 , 0. There is now a

difference between the angular velocities on each side of the

moving interface, This introduces, see [2], a jump in the

acceleration across the moving interface of value (w - wo(I]

The inner part of the beam therefore has the acceleration

( t- x)w + 4(w -wo(()], Fig. 5. The moment equation about

the midpoint of the beam and the equilibrium equation become

2M0  2 _o 6w mw2

0 2

12 =3g' + 3C2C'[Q - 0OW ]

L -2 Q + 2(t [0 - o(0)] J

From these we obtain

3

+ 2, •(

Eliminating 0 by taking the derivative with respect to time of

the second equation yields

2 12 d(o+ +~d ~ ~ =~ ~

12

2 dQ

I [ + 12q) t3 o ti

a. 'N..
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-12 - 12 q + [ . ( 3 "0 dt + C1

j 12n - C1  K 3d0o
r ih given d(]dt + C2  (3)

1 no 0~ t to

As 0o is a given function of , the two integrations on the

right hand side can be performed, On the left hand side is

the given impulse. Hence this equation yields (n). 9(n) is

then determined by

0 = o() +

or (Q = Qo(O) + [12q - CI - P t 3 dg2°

1 0

The two constants of integrations C1 and C2 are determined by

the values of t and 0 that apply at the beginning of phase IV,

no and Eo denote the values of q and ( at the beginning of

phase IV. This phase ends when = 1 or Z = 0.

The motion following phase IV for a decreasing load is

governed by the equations given in phase III with the new initial

conditions. The problem ends when 0 = 0. Note that during the

last part of the problem we may have vanishing p,.
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B. The Simply SuDorted and the Built-in Beam

with Uniformly Distributed Load

These two problems are very similar and are treated

simultaneously. The difference appears at the supported ends.

When motion takes place the moment at the supported end is kMOP

where k = 0 for the simply supported beam and k = 1 for the

built-in beam.

The uniformly distributed load has a total value P.

During the first phase there is no motion, This phase ends when

00
the motion of Fig. 6 starts. We obtain with w = .0

(1 + k)Mo =0 P

or
I = 4(1+ k).

Hence phase I applies for 0< < 4(l + k).

During the second phase the motion of Fig. 6 is appli-

cable. The moment equation about the supported end yields

(i + k)Mo + I Pt

or

-3(l +k), (5)

Successive integrations give 0 and ( When checking for the

maximum moment we find in this case that a region of fully

plastic moment starts from the midpoint. It begins to develop

when the acceleration of the midpoint reaches the value P/2bn.

Hence

2mt
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or

Substituting this into the above expression for Q1 determines

P.11 = 12(1 + k). Hence the second phase applies for

(l + k) < p < 12(1 + k).

For V > VII the motion of Fig. 7 takes place, In phase

III we assume < 0. This implies that the acceleration is

cdntinuous across the moving interface. The acceleration con-

dition at x = ,?, and the moment equation about the supported end

take the form

Q 1
• ~~(i +k7°. + 3 3 3mc = %2J

or

21
S 2 3(1 + k).U

From these we obtain

= 2 3(1 + k) (6)
11

AT (7)
4 '/3(I + k)

Two integrations give 0 and C.

In phase IV we consider O 0. Compared to phase III

there is a difference only in the acceleration condition across

the moving interface. Because of the jump which has the value

Z[w - wo( )]j the acceleration condition across the interface
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and the moment equilibrium condition about the supported end

take the form

(1 +.k)Mo + m

or

=2gQI + 2 1[Q - Q ()]

30, + 4(i + k).
3

Eliminating Q in the same way as before we obtain

3 3 11 2 21+k "d~lo

- ( + 3 + 12/1  + k) + 1 + ---- 0
12 d

3 12(l + k)E + 24(1 + k)93 4C3 d C,

XI

12( +. .k- 4( k - + 1+ (3 d 0 d + C1]23 0 3 to d[

lid 12(1 + k),n - 2% C ,5 3 d 8

n'o  -0 o

The constants of integration re determined in the same way as

in the previous problem, We have

\, = o(0 + 12(1. + k) - mE 2

g2,

or

0 d=].+(9)
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I
This phase ends when =1, or 0 =,

The fifth and final phase has the same form and solution

as phase I1. New initial conditions apply, This phase ends

when 0 = 0. As before the load may vanish during this phase,

or during the previous phase.

C. The Triangular Pulse for the Built-In Beam with a

Concentrated Force at its Midpoint

In this section we compute the solutions of a typical

problem which exemplifies the method described in the previous

sections. We choose the built-in beam loaded with a concentrated

load at its midpoint where the load-time relation is a symmetri-

cal triangle, see Fig. 8:

P = Pm , 0< t < T; P = Pm( 2 - ), T < t< 2T; P = 0, t 2T

or
=m ,  0.< < iL m = m(2 - 1I), 1< q < 2; jL = 0- n Z2.

We have to distinguish between three cases. The first consists

of 4 < Vm < 12, so that the fully plastic region never occurs.

The second case consists of 12 < 4m V o where p. is determined

by the condition that the force will not vanish during phase IV.

The last case considers Vm z VoR

In the first case only phases I and II take place. We

have phase I when 0 _< q < 4/ m . During phase II we have

M qm - 6 (la)

2 - q + 1

= 2 + 12 TI
pmpm Im
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This is valid for < . We have at n

=1m-6+0

11m PM.

For 1 ). the force is given by IL =m(2 - 1). Hence

=2 21 m(2 - ) -6b)

2 M
3(im - 2)q 1- 2 -3 1 mm + 127 I'm

31(jm - 2) q2 - mj3 "  m"12) q + I Lm , 16
2 ~)~ m 2 m P'M 21M

These expressions are valid tuitil 9 = 0 or i = 2. In the first

case, when 9 = 0, we obtain the following final values, when the

motion ceased

nf = 2 + r - 7 + 1)
tm

(i) =3m + V2 jim - 18 - 12 vr/ + Z2 + 4r2. 6. 64 .2
Lm m I'm 11M.

This is valid for qf 2 i.e., jm < 4 + 2 V2. For Im >  + 212

we obtain at ' = 2

9 = m " 12 + 12

12 + 6
2mI'm

For > 2 we have

1w
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O' = - 6(ic)

3 1
= Fm - 6q +-

Pm

I ° (23-2 1m + 1l-2)q "- 3 2 - m " m

The motion ceases when 9 = 0 or

f m + 2
Lm

The final angle becomes

(2) = t l 2 "  m + 3 - (1+ + 2 V12 j m _ 12),

For the second case, 12 < Lm [to, phase I and II are

the same as beforeq but in this case phase II ends when the

load reaches the value tII i.e. q = 12/m, For this value we

have QII = 48/ m and ¢II = 128/im

During phase III we have

=12 (2a)
Lmq

1m (2b -

m

M + -102. (2c)
2880 jm pm

This phase ends at q = 1, For this value we have

il =I = + 1Z and = , + 12 1.02
I'm jim JPm

. 1
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The angular velocity in the fully plastic region is 0o(x). It

is determined by

Qo(x) m + I 2 where I
~m m

Hence
X)= + 12
Pmx  m

During phase IV we have

In12q C 1I  3 d
11m(2 _ q)dq + ,1 dC] dl + C2

12/1m 12/.m (3a)

We have dQo ( ) 144
d 77 "

Hence

m '
12/jim  12/Vm

Moreover the initial conditions determine C1 = 12 and C2 = 0.

Equation (3a) therefore yields

(122 - 2r(2-) - (2 -4 + q2) = 0
fLmk

0627 n± - (q - 1

12 . (3b)

Vm \/2 - (2 - 1)qi

The minus sign in front of the square root is chosen in order to

ensure Z 0. This phase ends when ( = 1, i.e.,

7 "1
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=(r2 + 1)(r2- 12).IV

In order to have qlV < 2 this case is restricted to

Pm -<  o = 12 + 6 V-2.

Inserting the above value of E in the expression for 2, equation

(4), yields

0 = / 3 v"2 + 1) q - 3 r2[V (r2 - 1 ) 11 + 12 (4a)

= 112 2.8 + 0. - 12q + 8(3 - r2)2 - 4(7 - -r2)q3

+ 6(3 - 2 V -)q 1(23 - 1642- A) ] + j -_ .

(4bw'

At V = we obtain

Q = 212 + 2- 4(5 +3V) ]

mmIV= 0.3 +1/, m3 _ 120 m+ 26  + 1,049.6 + §06.4 ,

During phase V we have for 9IV < q 2

= p m(2 - q) - 6 (id)
2m

=3 2( 3 2)1- +2

(O m "2)12 " L 3 + (2 32 3

-(1 + V2)Im + 18 + 12 V - 534.4 + 34.6

At q =2 we obtain
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3
fl m"12 + I-

2m

1=4 + 2- - + 6 + 12V-54.4+45.6 V

Pm

During the second part of phase V we have

a = - 6 (le)

= - 6q + 12
2'm

( m + L2-) 32 + A+ 2

- (3 + 72 + 18 + 12 4 - 4Ve + 14 5. 6 V2

The motion ends when 9 = 01 i.e., rf = m + -1 • The final

value of 
( is

= 0,3+m + m - (3 + Vr)pm + 21 + 12 vr

.22.4 + 346 V2 (12 < ii 12+6V),
m- M

In the third case pm = 12 + 6 V, We have the same

solutions as before until 1 = 2. At this time the force van-

ishes, We have at n = 2

6 ( + l! 6.,( v"2 + 1)

IP

~~'m

8 2--11 3 2+_
14 P P'm

0 0.6 r2 --7m3 + 2- _O12 .46 I'm 11M2
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During the second part of phase IV 0 = . We obtain

0= d]d + C2 (3c)
6 (2 + 6(2+Vf)/Om

or
12 C Cl)22C2

The initial conditions at r = 2 determines

cI1 = 12(vf-1), C2 = Om

and furthermore requires the minus sign in front of the square

root. Hence

12

2 (3d)

pm(  R - 2

Phase IV ends when 1 =. This gives ,1V = + -  Inserting

this value for in the expression for 01 equation (4), yields

S: [- 2  1I + 3 12 + 12 (4c)

= [- 0.4'r5 + 2r3 - 39 + 0.1+(q 2 - 2)5/2

+ 0.2 V7 + 0.71 + 2n . 0m (4d)
m thm

At the end of phase IV we have
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(0.2 v'2 + 0 74)m 2

During phase V we have

= -6 (If)

=2 m- 62 +I

: ;-q "3n2 + 42 Pm m

S2
_1i 2T _ 3  .6

The motion ends when Q = 0. This gives

f=. ILM + 2
m

(0.7 + 0.2 V2) m 3_ 6 1 2 +6V),
f 144 2 m

of as a function of lm is plotted in Fig. 10.

We are also interested in the final deflection of the

midpoint of the beam. The beam is straight for the part

0 _ x _ where T is the minimum value of ( during the motion;

T = 12/fm- The part TsL< x< t is curved due to the finite

plastic region. Consider an element in this part of the beam.

It becomes a member of the finite plastic region at time

q= (see equation (2a)), It remains in the finite plastic
Pm x
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region until

= (V"2 + 1)( V2 )- 92< 2; (see equation (3b))
or x A
or + 2 2; (see equation (3d)).
12 12,t Lmx2

During the time in the finite plastic region this element has

the constant angular velocity % +12 . Hence its
,m x  11m

rotation during the time in the finite plastic region is

= (- + 1-(2 " Q During the remaining time of the

ILmX M

motion the element is rigidly connected to the center part of

the beam. At time n1 the center part of the beam has the slope

2 5 + = 2 (see equation (2d)).

mx 1'm x VM

At time n2 the center of the beam has the slope

0(l) - o+.2 m3 - 108 r + 950.54

2 (. 4 . . 4x  m2 X5

24 12,/2 (14 +144ZZ' -i02.4
+ 2i 2v~ -

Im Lm x m

n2 < 2; (see equation (+b))e

(2) (0.7 + 0.2V2)Vm3  + 4 22+2+ 72"t 12X+

+ +2 q" O 1 2 2; (see equation (4d)).
ILM x m

I~m%
V.

/V
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Hence the final angle to in the part , <x < is given by
"of

0(1) (3 )  ) +01+ elements for whici q2 <2
of f 2

(2) (4) (2) + 0 + 00, elements for which q2 2%of f 2 $ o

We therefore have

O(3) a A (2) = (D2) 4 < tm 12
ff f f

14 1

(4 +) (4) Mld( o + (D(2) d(x) im > 12 + 6 V7
A f of d of

wLere 12 + 6
2 Oi'm

Af as a functidh of lm is plotted in Fig, 11.

We compare the above solutions with the solutions for a

rectangular pulse defined by the values (Fig, 9)

P= Pm O<t<T; P=O t>T
or

= m 0 < q = I4 ,=0O q Z ie

This problem is solved in [1], The solutions are

2 3
'f = Am 2  ;m (I+ <im< 2)

3
E=f (jm 12)
S96

2

A -°i
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f= (3 + 2 n ) 12)o

The final deformations for the rectangular pulse are plotted in

Figs. 10 and 11.

The solutions have also been computed in a similar manner

for the beams discussed in Section B for the symmetrically tri-

angular load-time relation and the rectangular load-time relation

(Figs. 12 - 15).

D. Summary

Equations (1) - (9) determine the motion of the beam fcrs

the general load-time relation of Fig. 2o In particular the

final deformations have been computed for the triangular load-

time relation of Fig. 8 and the results are shown in Figs. 10 -

15. In these figures the final deformations are also shown for

a rectangular pulse, (Fig. 9), having the same total impulse as

the triangular pulse. A comparison between these two pulses

shows that the final deformations of the triangular pulse are

smaller than those of the rectangular pulse and that the differ-

ence is 15% - 35% of the values of the rectangular pulse when

the maximum load exceeds twice the static collapse load. Similar

comparisons with the rectangular pulse have previously been made,

see (4], and they show differences between the final deformations

that are of the same order of magnitude as found in this paper.

The conclusions of [4] can therefore be expected to be valid

for the problems discussed in this paper.

I -



Al-108

Bibliography

1. P. S. Symonds, "Large Plastic Deformations of Beams under
Blast Type Loading", Report All-99 to Office of Naval
Research (1953); to appear in Proceedings of Second U.S.
National Congress of Applied Mechanics.

2. E. H. Lee and P. S. Symonds "Large Plastic Deformations of
Beams under Transverse Impact"t J. Appl. Mech. Trans*
A.S.M.E., ±, 308 (1952).

3. P. S. Symonds and C.-F. A. Leth, "Impact of Finite Beams
of Ductile Metal", J. Mech. Phys. Solids a, 92 (1954).

4. P. S. Symonds "Dynamic Load Characteristics in Plastic
Bending of Beams", J. Appl. Mech. Trans. A.S.M.E. 7
475 (1953).

j -. ~V



Fig. 1. The plastic deformations In the built In
beam with a concentrated load at its midpoint

F

t

FIga. The load -time, relation



All- lOS 22

P

x W

Fig. 3. The external ara MO Ni0
dynamic forces during R
phase M(l-x.

112 P

Fig. 4. The external and )M
dynamic forces during -M x)
phase Ml C

1/2 P mjI.au 0
Mo)MO

Fig. 5. The external and
dynamic forces during 4
phase .



1/2 p

Fig. 6. The external and d-pnric forces during phase 31 for
the beam with uniformly distributed load

1/2 CP

Fig. 7. Thme external and dynomlio fores durin phse. NM
and N for the, beam with uiIfoily distrIbuted load.



All -108 24

PM P'

T 2Tt

Fig S.Tetir~rla~ eio

I

* Fig. 8. The retranuar load-tlme relation



IAll-108 25

Of

90-

P
70 - BM A

Curve A

T 2T t

P

Cu rve B
40-

T t

10

'0-

0 5 10 15 20 2 5  &m.

Fig9. 10. The final slope of the non-curved port,

of the built-in. beom with a concentrated load
at Its midpoint



All -106 26

70 P

7 -Curve A P

6T 2T t

50 P

Curve B L
T t

130

20

0 5 10 15 20.' 25 m

.Fig. lII.The f Inal def lection of the midpoint of the
built-in boom with a concentrated load at it midpoint



All .108 27

5p

40-

3 -Curve A PmB - A
301- T 2T

25- P
* Curve B

20- T /

5 - / 

o .5 10 15 20 25

Fig. 12. The final slope of the non-curvd part of the
simply supported beam with uniformly distributed load



All -10S2

50-

45-

PT-
40-

P

0-Curve AB 
A

30~ T2TT
P&

25-P
Curve B

20-T

15-

10-

5-

00

0 5 10 t5, 20 25
Fig. 13. The final deflection of the midpoint of
the simply supported beam with uniformly distributed
load

/V



100

90-
P

801

P

Curve B

20-

30-

00 10 20 0 40 5

Fig. 14. The final slope of the non-curved port
of W1~e built-in beam with uniformly distributed load



All-l~s30

AfI
100-

90-
P

P

70 Curve A PMB A

60-
T 2T t

P
* .50

40 Curve B

40T t

30-

20-

10-

0 10 20 30 40 50. P
Fi g. IS. The final deflection of the midpoint of the

built in beamwith uniformly distributed load


